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ABSTRACT

In the past few years, research in Wireless Sensor Networks (WSN) has grown at

an unprecented rate. This is due to the large number of potential applications and

environments WSNs can be used in. Nodes in WSNs communicate in multihop fashion

to deliver the sensory information to a central processing unit, such as a base station

or a sink node. This form of communication requires a degree of network connectivity

which might not be always achievable, either due to the sensor deployment strategy, or

due to sensor node failure, which can be malicious, or otherwise. In this thesis, we study

the problem of data delivery in disconnected WSNs. A special class of disconnected

sensor networks called ”Fragmented wireless sensor networks (FWSN)” is considered. A

FWSN consists of several groups of connected sensor nodes that we call ”fragments”.

We propose a mobility based approach that exploits resource rich, in terms of power

and buffer size, mobile agents that move in the network and operate as data relays

between fragments to eventually deliver data to the base station. The movement of the

mobile nodes and their role as relay stations is modeled using a closed queueing network

approach, which is used to obtain steady state results. Building on these results, we

derive the distributions of the fragment-to-fragment and fragment-to-sink delays. The

results show that this model accurately captures the system behavior. Using the same

model, the effect of the movement policy, the number and speed of mobile relays, and

the service time at each fragment on the end-to-end delay has also been studied. The

proposed queueing model can also be used to model other roles of the mobile nodes,

including their roles as either data collectors or data sinks. We also study some practical
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issues, including mobility control in large networks and engineering the service time, i.e.,

the time that an MR spend in relaying data between fragments.
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CHAPTER 1 INTRODUCTION

1.1 Sensors and Sensor Networks

Recent advances in wireless communication technologies have enabled the develop-

ment of small, low-cost and low-power multi-functional sensor nodes that are able to

sense the environment, process the data and communicate with each other in short

range. A sensor node consists, as shown in Figure 1.1, of five basic units: processing,

memory, sensing, power, and communication units. A processing unit is responsible for

executing the set of routines that form a sensor’s task. A memory unit consists of three

parts. First, the program flash memory that is used by the processing unit as a tem-

porary storage area to execute routines. Second, measurement flash memory which is

used to store sensory measurements obtained by the sensing unit. Third, configuration

EEPROM where all configuration data for a sensor node is kept.

A sensing unit includes different kinds of sensors, like temperature, light, and humidity,

depending on the application. The most important component is the power unit which

supplies all other units with the required power to operate. In addition to regular bat-

teries, a power unit might be sustained by solar cells [1]. A communication unit connects

a sensor node with its neighbors via radio communication.

In addition to all the basic units described earlier, a sensor node might include some

application specific units, like localization and mobility units. A localization unit helps

the sensor node estimate its geographical position with certain level of accuracy. Some

applications might require sensor nodes to be mobile in order to accomplish the assigned
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Processing Unit

Sensor(s) ADC

Transceiver

Power Unit

Program Flash 

Memory

Measurements 

Flash Memory

EEPROM

Sensing Unit

Memory Unit

Localization Unit Mobility Unit 

Communication Unit

Antenna

Figure 1.1: The general architecture of a sensor node.

mission. In this case, sensor nodes will be equipped with a mobility unit (mobilizer).

MICA2, MICAz, Imote2, and TelosB are samples of commercial sensor node platforms

developed by Crossbow [2].

A sensor network consists of a large number of those tiny sensors deployed randomly

in an area of interest. Nodes in a sensor network communicate in multihop fashion to

deliver the collected data to a central processing unit called the base station or the sink

node. Networking of sensor nodes has been a challenging area of research due to its

special characteristics. The limited sensor’s power, for instance, requires all protocols

designed for sensor networks to be energy efficient in order to prolong the network

lifetime. The random deployment, however, poses another constraint on sensor networks

to be self-organized. Moreover, the small memory size and limited power restrict the

computational capabilities of sensor nodes as well as the storage capabilities. All the

above mentioned limitations along with the fact that sensors are susceptible to failures

led to a vast extent of research to operate the sensor network efficiently.

On the other hand, sensor networks have some unique characteristics that make it so

attractive to use in many applications. In addition to the cooperative operation of sensor
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nodes [3, 4], those characteristics also include the dynamic availability of data sources

as well as the dense random deployment of sensor nodes. Sensor network applications

include, but not limited to, habitat monitoring [5], health monitoring [6], surveillance

and target tracking [7, 8, 9], and intelligent transportation systems [10]. Many research

problems associated with those applications have received a lot of attention. Security

and privacy [11, 12], coverage and connectivity [13], and data routing [14] are samples

of those problems.

1.2 Mobility in Sensor Networks

Several frameworks for sensor node mobility have recently been implemented. The

basic building block of those frameworks is the mobilizer unit. A sensor node equipped

with a mobilizer unit is called a mobile sensor node. However, a mobile node might not

contain a sensor unit and in that case the term “mobile sensor node” is replaced with

the more general term “mobile agent”. CotsBots is a mobile sensor node platform that

operates for ∼ 1 hour on four AAA batteries at a maximum speed of 1.2m/s [15]. MI-

CAbot is another mobile sensor node platform which operates for 3.5 hours on two 1.2V

AA batteries at a maximum speed of 0.3m/s [16]. On the other hand, some commercial

and application specific mobile agents might operate at much higher speeds. iRobot

PackBot Scout is an example of this category. It is designed for military operations

and it operates at a maximum speed of about 3.89m/s. Figure 1.2 shows pictures of

CotBots, MICAbot, and iRobot PackBot Scout.

Mobile sensor nodes are useful for applications that rely on cooperative sensing, like

target tracking, as well as applications in which data sources change dynamically. Mo-

bile agents are used when mobility is not utilized for sensing operations, but rather

for communication-based operations, like data relay and collection, as well as physical

operations, like replacement of defected sensor nodes. Therefore, “Mobile agents” is a
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very wide term that might include any mobile entity like vehicles, humans, animals, and

mobile robots. Exploiting mobility to improve the network performance has recently

become an important area of research in sensor networks [17, 18, 19]. Next, we review

the literature for some of the applications in which mobility was utilized.

1.2.1 Monitoring and Target Detection

In surveillance and target tracking applications, sensor nodes operate collaboratively

to monitor (cover) specific area and detect intruders. Such applications impose strict

constraints on the detection time. In stationary sensor networks, an intruder that is

currently undetected will never be detected if it just keeps its position. Sensor node

mobility has been introduced as a solution to this problem in [20] because when sensor

nodes move, the probability of detecting the intruder increases. Both cases, when the

target is stationary and mobile, have been considered. Moreover, the authors proved

through mathematical analysis that the optimal sensor movement strategy is that each

sensor chooses its movement uniformly in all directions. They also showed that the

optimal policy for an intruder in order to maximize its detection time is to remain

stationary. This thesis also investigated how node mobility can compensate for the lack

of sensors in the network. That is possible when continuous coverage is not required.

Instead, mobile sensor nodes keep moving in the network and consequently cover the

(a) CotsBots plat-
form

(b) MICAbot platform (c) iRobot PackBot
Scout

Figure 1.2: Sample mobile node platforms.
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area over a period of time. A Markov chain model was presented in [21] to evaluate the

target detection delay based on a collaborative sensing approach with uncoordinated

sensor mobility scheme. The results show that the worst-case detection latency in a

mobile network is much shorter than that of a static network.

The problem of event capturing using mobile sensor nodes was studied in [22]. Events,

which belong to a certain phenomenon of interest, arrive to the network field and van-

ish according to arrival and departure distributions. The authors studied the effect of

controlled mobility as well as the dynamics of the phenomenon being covered on the

fraction of events captured. The analytical results provide a guideline for choosing the

number and speed of mobile sensor nodes to guarantee capturing a certain fraction of

events.

1.2.2 Data Collectors

Mobility has been exploited by many researchers for data gathering in sensor net-

works. Some schemes rely on existing mobility in the environment, like vehicles or

animals present in the network field [23, 24], whereas some others suggest supporting

the system with mobile elements that have better buffer and energy capabilities than

ordinary static sensor nodes and are able to communicate over longer distances [25, 26].

The concept of mobile data collectors was first introduced in [23] to connect sparse

sensor networks. In that proposal, mobile data collectors, referred to as data MULEs,

move randomly and collect the data from reachable sensors. Then, data MULEs unload

the carried data as they get close enough to a base station. A three-tier architecture was

presented to describe the system; a top-tier of base stations (or access points are referred

to by the authors), a middle-tier of mobile agents (i.e. data MULES), and a bottom-

tier of stationary sensor nodes. The problem was modeled as a Markov Chain with the

assumption that data MULEs follow a two-dimensional random walk model. The model

was used to predict the inter-arrival time at a sensor node, the return time to an access
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point, and data success rate (the ratio between the generated and delivered data in time

t). In [27], multiple data MULEs with controlled mobility have been used for large scale

networks. A load balancing algorithm was proposed to balance the number of sensor

nodes that each data MULE serves.

The idea of sink mobility [26, 28] has been proposed as a method for data collection

that prolongs the network lifetime by reducing the energy spent by static sensor nodes

to relay traffic. Mobility of the base station poses several challenges regarding how the

data should be routed [29] and what the optimal movement strategy is [30, 31]. In [29],

a routing protocol (called MobiRoute) was proposed to route data to a mobile sink with

a discrete mobility pattern. Contrary to continuous movement, discrete mobility implies

a move-and-sojourn pattern. The sink’s movement trajectory is composed of several

anchor points where the mobile sink sojourns. The authors assume that the sojourn

time at an anchor point is much longer than the movement time between anchors.

Results showed that using the MobiRoute protocol with a discrete sink mobility can

improve the network lifetime with a modest degradation on the packet delivery ratio.

When and where to relocate the sink node are issues that have been addressed in

[31]. A heuristic search that tracks the density of the traffic going through the sink’s

neighboring nodes (i.e. sensor nodes that are in direct communication with the sink) was

proposed to answer those questions. If the distance between the sink and any set of its

neighboring nodes is larger than a threshold value, it computes the transmission power

times the traffic density of that set to measure the impact of the sink’s decision not to

change its location. If the impact is large enough, the sink node considers relocating

to a new position. The potential position with the maximum gain, in terms of saved

energy, is selected as the next location. Performance results show that the mobile sink

approach outperforms the stationary sink approach in terms of average energy and delay

per packet. Moreover, the average lifetime of a sensor node is increased by about 33%.
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1.2.3 Data Relays

The use of resource rich mobile nodes, referred to as mobile relays or routers, that

keep moving in a network, in both sparse and dense deployments, to relay data between

stationary sensor nodes has been recently utilized to prolong the network lifetime [32, 33]

and enhance the data delivery process [34].

In [32], the performance of a large dense network with only one mobile relay has been

evaluated by simulation. Results show that the improvement in the network lifetime with

a mobile relay over an all-static network is upper bounded by a factor of four. Moreover,

it has been shown through analysis that the mobile relay does not need to go beyond

a two hop radius of the sink. This result is intuitive in the sense that the sensor nodes

that are close to the sink relay more traffic and consequently consume much power.

Mobile relays have been referred to as Message Ferries (MF) by other researchers. In

[34], a single message ferry with deterministic movement has been exploited to efficiently

deliver data in sparse mobile ad hoc networks. Two variations of the MF mobility were

presented based on who initiates the movement, an ad hoc node or a message ferry. In

the node-initiated movement scheme MFs move around the network field according to

predetermined routes. Those routes are known to the ad hoc nodes who move close to

them to communicate with the ferry. In the ferry-initiated scheme however, ferries move

proactively to meet ad hoc nodes.

1.3 Fragmented Wireless Sensor Network

In this thesis we are interested in the data delivery problem in disconnected networks.

Most of the current research that rely on mobility to overcome network disconnection

attributes this problem to the sparse nature of the network. Sparseness has been assumed

to be either due to the lack of sensors at the deployment phase or due to node failures.

In networks that do not tolerate failures, there are two possible ways to cope with node
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failures: first, to redeploy sensors wherein there are dead ones until the whole network

is connected again [35], and second, to have a guaranteed level of fault tolerance at the

initial deployment [36]. In this thesis, we consider another form of network disconnection

in which the network is fragmented into several subnetworks (fragments), where the

fragment is a connected group of sensor nodes. Figure 1.3 shows an example of a

network of four fragments. Network fragmentation might be due to a number of reasons,

including:

(1) Node Failures : which might cause network fragmentation in two different scenarios:

(i) In harsh and hostile environments nodes might fail at a mass scale in certain

regions causing the network to be fragmented. For example, a bomb or land

mine detonation in a battle field might break the deployed network into several

fragments. In another scenario, natural phenomena like heavy rain or a mud

slide can wash or move the sensor nodes away, or even bury them where they

become useless.

(ii) Power depletion due to the unbalanced load distribution at individual sensors

as a result of random deployments, i.e., hot spots.

(2) Fragmented area of phenomenon: in some applications, it might not be required

to cover the whole field. Instead, specific regions in the field must be covered.

(3) Environmental conditions : the deployment of a connected wireless sensor network

might not be feasible due to physical obstacles and restrictions.

Under the assumption that a FWSN tolerates faults, adding more static sensors between

fragments to connect them might not be possible especially in hazardous scenarios, like

battle fields, disaster areas, or areas contaminated with chemical materials. We propose

a data-relay based scheme to deliver data in FWSNs that uses mobile agents to act as

relay nodes between fragments. Agents move continuously in the network according to
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Sensor Node Relay Node Base Station

Figure 1.3: This example shows how relay nodes are used to connect a fragmented network.
Arrows represent data flow between nodes.

a certain policy in order to act as relay nodes between fragments. This way, the network

will be connected over a time period instead of continuous connectivity.

1.4 Thesis Contribution

Our first contribution is the introduction of the fragmented sensor network problem

as well as the issue of data delivery in such networks. We propose a scheme that relies on

mobile agents to relay the data between fragments and eventually deliver it to the base

station. We have modeled the “data delivery in fragmented wireless sensor networks”

problem as a Closed Queueing Network and used the model to accurately compute the

average as will as the distribution of the fragment-to-fragment and fragment-to-sink

data latencies. The effect of the number of mobile relays and the underlying movement

policy on the data latency has been also studied. The results suggest that improving

the movement policy might result in a better performance than just adding more relay
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nodes.

Utilizing mobile relays in large sensor networks (in terms of the area of the field) has

also been studied. Our results imply that dividing the field into subfields and distributing

the relay nodes over them results in better performance than just having the relay nodes

serve the whole field as one entity. We also studied the problem of engineering the time

that a mobile relay should spend in relaying data at each fragment. An algorithm was

proposed to estimate the amount of data that will buffered in a fragment in a period

of time t. Based on this amount of buffered data, we have been able to estimate the

required relay time.

1.5 Thesis Organization

The rest of this thesis is organized as follows. In Chapter 2, we introduce a formal

definition of the “Data Delivery in Fragmented Wireless Sensor Networks” problem

and then present a Closed Queuing Network model to evaluate the performance of the

system. Chapter 3 addresses the issue of fragment-to-fragment data latency as well as

the effect of the movement policy on the performance. The fragment-to-sink data latency

is studied in Chapter 4. Some other related issues, like dealing with large networks and

calculating the sojourn times at service centers, and their effect on the performance are

studied in Chapter 5. Chapter 6 concludes the thesis and suggests some future research

directions. Appendix A explains how to solve a Gordon-Newell network for equilibrium

probabilities. A table of definitions is presented in Appendix B.
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CHAPTER 2 PROBLEM DEFINITION AND MODELING

In this chapter, we first give a formal definition of the “Data Delivery in Fragmented

Wireless Sensor Networks (FWSN)” problem in Section 2.1. An introductory overview

of Queueing Theory, its applications, and why we have chosen it to model the system

is presented in Section 2.2. We then describe in detail the mathematical model we

developed to model FWSNs, and show how to apply it to two different examples in

Section 2.3. We summarize the chapter in Section 2.4.

2.1 Problem Definition

The problem addressed in this thesis is called “Data Delivery in Fragmented Wireless

Sensor Network”, and it is defined as follows:

Given an FWSN that consists of n fragments, let K∗ be the minimum number of static

relay nodes required to connect the whole network1. We make the following assumptions:

- There are K mobile relays, 1 ≤ K < K∗.

- All mobile relays move at the same speed of L m/s.

- No more than one mobile relay is used to connect a pair of adjacent fragments. An

MR relays data between a pair of adjacent fragment through direct communication

as they are assumed to be close enough. 2

1Note that there is always a way to connect the network over a sufficiently long time period, t, with
K mobile relays, where 1 ≤ K < K∗. However, the fewer the number of mobile relays, the higher the
delay.

2If the two fragments are far apart, then the MR should carry the data from one fragment, move
close enough to the second fragment, and relay the data. This case is not studied in this thesis and it
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- The connection between any pair of fragments i and j must persist for at least

tsij time units. During this period, data will be relayed from fragment i (source-

fragment) to fragment j (destination-fragment) through the MR in between3. tsij

will be referred to as service time or sojourn time interchangeably. For the time

being, tsij is assumed to be long enough to relay all generated data, and we will

revisit this issue of in Chapter 5.

Our objective in this study is the following:

- Find the distribution of the waiting time for a fragment before its data is relayed

to the next fragment. We call this waiting time the “idle time”.

- Find the distribution of the end-to-end delay, i.e., the time to deliver data to the

base station.

We make the simplifying assumption that the network can be connected with only one

mobile relay (MR) between any pair of fragments. This assumption is valid because

mobile relays are supposed to have a long transmission ranges.

Note that tsij is necessary to give the mobile relay enough time to relay data between

fragments. The value of tsij depends on the amount of buffered data in fragment i which

depends on three factors:

(1) Number of sensors in fragment i.

(2) The average data generation rate of a sensor in fragment i.

(3) The amount of data buffered in all fragments that pass through fragment i.

We will revisit the issue of engineering tsij in Chapter 5. Before that, we assume that tsij

is known in advance.

will be part of our future work.
3In the case of distant fragments, this time period will include both the direct communication time

and the movement time between the pair of fragments.
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2.2 Queueing Theory Overview

Queueing Theory [37, 38] is the mathematical study of queues or waiting lines. The

theory has its roots early in the last century with the studies of A. K. Erlang and

A. A. Markov on stochastic processes. It is widely used to model a broad variety of

systems including computers, telephone systems, military operations, water reservoirs,

machine repairs and many others [39]. Queueing theory enables the evaluation of several

performance measures like the probability of having the system in certain state, the

average service time, and the expected queue length.

The queueing process is described as follows: Customers requiring service arrive to,

according to a certain arrival distribution, to the queueing system and join a queue where

they are buffered until being selected for service according to certain criterion known

as the service discipline. Selected customers are then served in accordance to a service

discipline and a service-time distribution. Figure 2.1 describes the queueing process.

The number of customers that might go through the queueing system is usually referred

to as the population size, which can be limited or unlimited. The service discipline is

the criterion used to select members of the queue to be served. A very common criterion

to buffer new arriving member is the first-come-first-serve and usually this is the default

criterion assumed by queueing models unless stated otherwise. Criteria based on priority

might also be used. The service mechanism includes one or more service channels

called servers as well as the time of service that follows a service time distribution. The

Queue
Service 

Mechanism

Arrival 

Distribution

Unserved 

Customers

Served 

Customers

Queueing System

Figure 2.1: The queueing process.
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Symbol Distribution

M Markovian
D Deterministic
Geo Geometric
G General (arbitrary)

Table 2.1: Possible distributions of A and B.

most frequently used service time distribution is the exponential distribution due to its

Markovian nature. D. G. Kendall proposed a standard notation for classifying queueing

systems into different types. This notation is,

A/B/C/D/E

A refers to the arrival distribution, whereas B refers to the service time distribution.

Table 2.1 shows some of the distribution types that A and B might take. C refers to the

number of servers which might be 1 (single server), m (multiple servers), or ∞ (infinite

servers). On the other hand, B refers to the maximum number of customers that can be

accommodated in the system, i.e. the maximum buffer size. Finally, E represents the

population size and it can be either N (i.e., limited) or ∞ (i.e., unlimited).

Queues can be interconnected together to form a network of queues, usually referred

to as a Queueing Network. Queueing networks are classified into two categories; open

networks (also called Jackson networks) and closed networks (also called Gordon-Newell

networks). An Open queueing network, see Figure 2.2(a), has external input from which

new customers enter the system as well as an exit where customers leave the system.

On the other hand, a closed queueing network, see Figure 2.2(b), has no external inputs

or outputs. Therefore, customers circulate in the network and never leave. A third type

of queueing networks is called Mixed networks. This type is open for some classes of

customers and closed for other classes.

Values that appear on the arrows in Figures 2.2(a) and 2.2(b) are the routing probabil-

ities between the queues in the network. For example, a customer leaving queue Q3 in
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0.7

0.3

Enter the 

system 

Leave the 

system

Q1

Q2

Q3

(a) Open Queueing Network

0.5

1

0.5

0.8

0.2

Q1

Q2

Q3

(b) Closed Queueing Network

Figure 2.2: Difference between open and closed queueing networks

Figure 2.2(b) has a probability of 0.2 to enter queue Q1 and a probability of 0.8 to enter

queue Q2.

Queueing network are known to be very accurate and effective to model a vast variety

of systems and provide several probabilities that can be used to measure the system

performance. A closed queueing network fits our problem, as we have fixed number of

customers (mobile relays) with no external departures or internal arrivals. In the next

section we model the data delivery problem FWSN as a Gordon-Newell network.

2.3 Mathematical Model

Figure 2.3 shows the case-study network that will be used through out this thesis

to illustrate our modeling approach. This network consists of six fragments labeled

(FRAG-1,. . . ,FRAG-6). Hexagons that appear between a pair of fragments represent

potential locations where mobile relays can stop to relay data from one fragment to

another fragment. For example, a mobile relay at connection point 1 relays data from

FRAG-1 to FRAG-2, and a mobile relay at connection point 3 relays data from FRAG-3

to FRAG-6 and so on. From now on, connection points will be referred to as Service

Centers (s/c).

Let s/ck be the kth service center that connects fragments i and j in the FWSN. We model

s/ck as an infinite-buffer/infinite-server queue. As a matter of fact, the number of servers
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and the buffer size need not to exceed k. But, in order to make the analysis tractable

we use infinite-buffer/infinite-server queues. Each server offers service according to an

exponentially distributed service time with a rate µk = 1
tsij

. We call such a queue a relay

queue.

FRAG-1

108 sensor nodes

FRAG-5

72 sensor nodes

FRAG-4

64 sensor nodes
FRAG-2

64 sensor nodes

FRAG-375 sensor nodes

FRA
G-6

60 s
enso

r nod
es

Service Center

Base Station

Fragment

1

2

3

4

5

Figure 2.3: A case-study FWSN with six fragments and five service centers.

For the time being we assume that the routing probabilities between service centers are

given, and we will revisit this issue later. Table 2.2 shows sample routing probabilities

that are used for our case study, where qij represents the probability that a MR leaving

s/ci goes to s/cj.

This model does not capture the effect of the trip time between service centers. To

capture this time, the following modifications are introduced:

- For every pair of relay queues (i, j), for which qij > 0 we add an infinite-buffer/infinite-

server queue, we call such a queue a movement queue, with a mean service rate
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µi =
L

dij

, where L is the MR speed and dij is the distance between s/ci and s/cj.

We assume that the route that a MR takes from i to j is the same as that it takes

from j to i, therefore dij = dji.

- The probability that a customer leaving queue i goes to the newly added movement

queue is the same as the probability that a MR leaving s/ci goes to s/cj. On the

other hand, the probability that a customer leaving the movement queue goes to

queue j is 1.

In the remainder of this thesis, we will use the word queue to refer a queue of any type

(i.e. movement or relay). To reference a particular type we use “movement queue” or

“relay queue”.

We model the number of mobile relays in the network as the number of customers

that circulate in the closed queueing network. Tables 2.2 and 2.3 summarize all the

parameters associated with the case study in Figure2.3 and they will be used in all

analysis and simulations regarding this case through out this work unless mentioned

otherwise.

Using the parameters in Table 2.3 and the mapping procedure described earlier we

construct the Gordon-Newell network model shown in Figure 2.4 for the case study shown

in Figure 2.3. Gray nodes represent the relay queues and the other nodes represent the

movement queues. µi represents the service rate of queue i. Appendix A explains how

to solve the queueing network for equilibrium probabilities.

2.4 Summary

Data delivery in fragmented wireless sensor networks poses several questions on how

to utilize a given number of mobile relays that move according to a certain policy (i.e.,

routing probabilities between service centers) to minimize the data latency. This problem
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µ7=L/d5,1µ7=L/d1,5µ8=L/d4,1µ7=L/d1,4

µ2= 1/t
s
52µ13=L/d2,5µ5= 1/t

s
23µ11=L/d5,4µ4= 1/t

s
42

µ10=L/d4,5 µ14=L/d5,3 µ12=L/d5,2

µ15=L/d3,4 µ3= 1/t
s
36 µ17=L/d2,3

µ16=L/d3,2

Figure 2.4: Gordon-Newell Network model for the case-study shown in Figure 2.3

was formally defined in Section 2.1 and modeled using a Gordon-Newell network in

Section 2.3. In the next chapter we derive the probability distribution as well as the

expected value of the idle time at any service center in the network.
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Service center qi1 qi2 qi3 qi4 qi5

s/c1 0.0 0.0 0.0 0.4 0.6
s/c2 0.0 0.0 0.6 0.0 0.4
s/c3 0.0 0.2 0.0 0.8 0.0
s/c4 0.5 0.0 0.0 0.0 0.5
s/c5 0.35 0.25 0.2 0.2 0.0

Table 2.2: Sample routing probabilities between different service centers which are used in
our case study in Figure 2.3.

Network Parameter Value

Num. of MRs 2
Num. of s/c’s 5

Speed (L) 1.2 and 3.89m/s
tsij 1min
d14 391.76m
d15 368.76m
d25 401.6m
d23 680.34m
d34 463.1m
d35 321.74m
d45 357.94m

Table 2.3: System parameters of the case-study shown in Figure 2.3.
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CHAPTER 3 IDLE TIME DISTRIBUTION

The idle time of relay queues is a direct indication of the amount of time that

fragments need to wait before receiving service. In the case of one service center per

fragment those two time periods (idle time and waiting time to receive service) are

exactly the same, whereas in the case where more than one service center is assigned

to a certain fragment the waiting time depends on the routing protocol. For example,

in a hot-potato routing scheme, the waiting time for a fragment to receive service is the

minimum idle time of all service centers assigned to it. However, in a minimum number

of hops (i.e., shortest path) routing, the waiting time is the idle time of the service center

that lies on the shortest path. Therefore, it is of great importance to predict the idle

time to give a clear picture of how well the system performs. This thesis considers the

case of one service center per fragment only.

In this chapter, we first introduce some definitions that we then use to evaluate the

distribution of the idle time at a queue. Then, we use this distribution to evaluate

the average idle time at a queue and as a result at a service center. This idle time

distribution can also be used to evaluate the distribution of the total time that the data

might spend being relayed from one fragment to another before it eventually reaches the

base station (i.e. the end-to-end delay).

This chapter is organized as follows. In Section 3.1, we first give some definitions

before going through a detailed mathematical derivation to derive the idle time distribu-

tion at any service center. Then, we validate our analytical results by comparing them

to results from a simulation model in Section 3.2. The effect of the movement policy on
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the performance is studied in Section 3.3. We conclude the findings of this chapter in

Section 3.4.

3.1 Idle-time distribution

In this section we derive the idle time distribution at any queue. The idle time at a

service queue represents the idle time at the service center that this queue models. We

derive the idle time distribution in two forms:

(1) Joint distribution: in which the probability that queue i is idle for time t ≤ τ is

taken jointly with the probability that queue i has been idle at the reference time

(t = 0).

(2) Conditional distribution: in which the probability that queue i is idle for time

(t ≤ τ) is conditioned on the fact that queue i was idle at the reference time

(t = 0).

As we will see in Chapter 4, the idle time distribution in these two different forms is

required for the evaluation of the end-to-end delay. We start by computing the end-

to-end delay along certain path from the point where the first service center on that

path becomes idle. Therefore, we use the Conditional distribution for the first service

center and the Joint distribution for the remaining service centers on the path. We start

this section by introducing some definitions and then derive the Joint distribution. The

Conditional distribution is evaluated as the Joint distribution divided by the probability

that the queue is idle at the reference time (t = 0).

3.1.1 Definitions

- M is the number of queues in the network (this includes both relay and movement

queues).
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- K is the number of customers (i.e., mobile relays).

-
−→
N = {n1(

−→
N ), . . . , nM(

−→
N )} is the state of the system, i.e., queueing network, in

which the K customers are distributed over the M queues such that queue i has

ni(
−→
N ) customers in this state. Note that

M∑
i=1

ni(
−→
N ) = K for any state

−→
N .

- Ω is the set of all possible system states, |Ω| =
(

M+K−1

K

)
.

- µj is the state-independent service rate of queue j.

- qij is the probability that a customer leaving queue i will move to queue j (we

assume that there is one class of customers in the system). In our queueing model,

qii = 0.

- π(
−→
N ) is the steady-state probability of state

−→
N , such that

∑
−→
N∈Ω

π(
−→
N ) = 1.

- ni is used to refer to the number of customers at queue i regardless of the system

state.

- Ei is the number of system states in which ni = 0.

- pi
idle(t,

−→
N ) is the probability that at time t, queue i is in state

−→
N in which ni(

−→
N ) =

0, and ni became zero at time t = 0 and remained so in [0, t] (i.e., joint probability).

In other words, this is the probability that queue i is idle for time greater than t.

Note that, pi
idle(t,

−→
N ) is defined only over network states in which ni = 0.

- −→p i
idle(t) = [pi

idle(t,
−→
N 1), . . . , pi

idle(t,
−→
N Ei

)]T .

- Ui is a row vector of ones such that |Ui| = Ei.

- Ti is a random variable that represents the idle time of queue i.
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- FTi
(t) = probability (Ti ≤ t), is the joint cumulative distribution function (CDF)

of Ti (i.e., the joint distribution that queue i starts and idle period at the reference

time (t∗ = 0) and stays idle for time Ti ≤ t).

- fTi
(t) = d

dt
FTi

(t), is the probability density function (pdf ) of Ti.

- FTi|I(t) = probability{ Ti ≤ t | ni = 0 at t = 0}, i.e., the conditional distribution

that queue i stays idle for time Ti ≤ t given that it starts an idle period at the

reference time t∗ = 0.

- fTi|I(t) = d
dt

FTi | I(t)

3.1.2 The Joint Distribution (FTi
(t))

In an infinite-server exponential service time queue i, the probability of serving a

customer within a very small time interval ∆t → 0, given that there are ni customers in

the queue, is given by:

niµi∆t + o(∆t) (3.1)

where o(∆t) is a function that approaches zero faster than ∆t. Therefore, the following

forward Chapman-Kolmogorov equation holds;

pi
idle(t + ∆t,

−→
N ) = pi

idle(t,
−→
N ) · prob(−→N at t + ∆t|−→N at t)

+
∑
−→
N ∗∈Ω

pi
idle(t,

−→
N ∗) · prob(−→N at t + ∆t|−→N ∗ at t)

(3.2)

In this Markovian system only one event (i.e., transition) is possible in a very short time

period ∆t. Therefore, the probability that the system will evolve from state
−→
N∗ at t to
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state
−→
N at t + ∆t is given by:

prob(
−→
N at t+∆t|−→N ∗ at t) =





nj(
−→
N ∗)µjqjk∆t + o(∆t)

if
−→
N =

−→
N ∗ +

−→
1 j −−→1 k

∀j, k ∈ {1, 2, . . . , M}. j, k 6= i

0 otherwise

(3.3)

Note that this probability is zero when the difference between the two states is more

than one customer, because it means that a single transition can not move the system

to state
−→
N .

On the other hand, the probability of no transition in the time period [t, t+∆t] is given

by:

prob(
−→
N at t + ∆t|−→N at t) = 1−

M∑
j=1
j 6=i

nj(
−→
N )µj∆t + o(∆t) (3.4)

Using equations (3.3) and (3.4) in equation (3.2) we get,

pi
idle(t + ∆t,

−→
N ) =

M∑
j=1
j 6=i

M∑

k=1
k 6=i

nk(
−→
N )>0

nj(
−→
N +

−→
1 j −−→1 k)µj∆t · pi

idle(t,
−→
N +

−→
1 j −−→1 k)qjk

+


1−

M∑
j=1
j 6=i

nj(
−→
N )µj∆t


 · pi

idle(t,
−→
N ) + o(∆t)

Rearranging the terms we get,

pi
idle(t+∆t,

−→
N )−pi

idle(t,
−→
N )

∆t
=

M∑
j=1
j 6=i

nj(
−→
N+

−→
1 j−−→1 k)µj ·

M∑

k=1
k 6=i

pi
idle(t,

−→
N+

−→
1 j−−→1 k)qjk

−
M∑

j=1
j 6=i

nj(
−→
N )µj · pi

idle(t,
−→
N ) +

o(∆t)

∆t

Taking the limit as ∆t → 0, we obtain

d

dt
−→p i

idle(t) = Ai
−→p i

idle(t)
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Where Ai = [ai
xy] is an Ei × Ei matrix such that:

ai
xy =





−
M∑

j=1
j 6=i

nj(
−→
N x)µj if x = y

nj(
−→
N y)µjqjk if

−→
N y =

−→
N x +

−→
1 j −−→1 k

0 otherwise

(3.5)

Therefore,

−→p i
idle(t) = eAit−→p i

idle(0) (3.6)

pi
idle(0,

−→
N ) can be found easily using the steady state probabilities as well as the routing

probabilities between service centers. Let ξik
j be the transition of a customer from queue

i to queue k (for k 6= i) that will make the system evolve from state
−→
N j +

−→
1 i − −→1 k

to state
−→
N j such that ni(

−→
N j) = 0 and nk(

−→
N j) > 0, i.e., ni(

−→
N j+

−→
1 i−−→1 k)=1. In other

words, ξik
j is the transition that will initiate an idle period at queue i. Let prob(ξik

j ) be

the probability that this transition takes place before any other transition. Then,

pi
idle(0,

−→
N j) =

M∑

k=1
k 6=i

nk(
−→
N j)>0

π(
−→
N j +

−→
1 i −−→1 k) · prob(ξik

j ) (3.7)

The steady state probability π(
−→
N j +

−→
1 i − −→1 k) can be obtained easily using the con-

volution algorithm [40] (see Appendix A). On the other hand, prob(ξik
j ) is given as:

prob(ξik
j ) =

ni(
−→
N j +

−→
1 i −−→1 k)µi

M∑

l=1

µlnl(
−→
N j +

−→
1 i −−→1 k)

qik =
µi

M∑

l=1

µlnl(
−→
N j +

−→
1 i −−→1 k)

qik (3.8)

Using equations (3.7) and (3.8) we get,

pi
idle(0,

−→
N j) =

M∑

k=1
k 6=i

nk(
−→
N j)>0

µiqik

M∑

l=1

µlnl(
−→
N j +

−→
1 i −−→1 k)

π(
−→
N j +

−→
1 i −−→1 k) (3.9)
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We are ready now to give the final expression for the joint distribution FTi
(t) that we

defined earlier,

FTi
(t) = 1− Uie

Ait−→p i
idle(0) (3.10)

Note that, according to the definition we made earlier for −→p i
idle(t), we have

−→p i
idle(0) = [pi

idle(0,
−→
N 1), . . . , p

i
idle(0,

−→
N Ei

)]T

3.1.3 Conditional Distribution

The next step is to evaluate FTi|I . Let pi
idle(t,

−→
N |ni = 0 at t = 0) be the probability

that queue i is idle for more than t given that it was idle at time t = 0. Therefore,

pi
idle(t,

−→
N |ni = 0 at t = 0) = eAitpi

idle(0,
−→
N |ni = 0 at t = 0) (3.11)

But, pi
idle(0,

−→
N |ni = 0 at t = 0) is given by:

pi
idle(0,

−→
N |ni = 0 at t = 0) =

pi
idle(0,

−→
N )∑

−→
N ∗∈Ω

ni(
−→
N ∗)=0

pi
idle(0,

−→
N ∗)

(3.12)

Substituting equation (3.11) in (3.12) we get,

pi
idle(0,

−→
N |ni = 0 at t = 0) =

M∑

k=1
k 6=i

nk(
−→
N )>0




µi

M∑

l=1

µlnl(
−→
N +

−→
1 i −−→1 k)

qikπ(
−→
N +

−→
1 i −−→1 k)




∑
−→
N ∗∈Ω

ni(
−→
N ∗)=0

M∑

k=1
k 6=i

nk(
−→
N ∗)>0

µi

M∑

l=1

µlnl(
−→
N ∗ +

−→
1 i −−→1 k)

qikπ(
−→
N ∗ +

−→
1 i −−→1k)

(3.13)

Finally, the conditional distribution FTi|I(τ) is given by,

FTi|I(τ) = 1− Uie
Aiτ−→p i

idle(0|ni = 0 at t = 0), (3.14)
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where −→p i
idle(0|ni = 0 at t = 0) is given by,

−→p i
idle(0|ni = 0 at t = 0) = [pi

idle(0,
−→
N 1|ni = 0 at t = 0), . . . , pi

idle(0,
−→
N Ei

|ni = 0 at t = 0)]T

(3.15)

3.2 Numerical Results

We applied the above expressions in equations (3.10) and (3.14) to evaluate FTi|I(t)

and FTi
(t) for all the service centers in our case study (Figure 2.3 and Tables 2.2 and

2.3). The results are shown in Figures 3.1 and 3.2. Notice that FTi|I(0)=0 because at

t=0 s/ci has just become idle and it will stay idle for non-zero time. However, FTi
(0)

can be non-zero which is the probability that s/ci is idle at time t = 0. We can also

see that the probability of having an idle period of length less than or equal t at service

centers s/c2 and s/c3 is greater than other service centers. This implies that the average

idle time at these service centers is greater than others.

Using the idle-time distributions shown in Figures 3.1 and 3.2, we can obtain the

mean idle time for any service center. The average idle time for service center i, denoted

by E[Ti|I] is given by:

E[Ti|I] =

∫ ∞

t=0

(
1− FTi|I(t)

)
dt

=

∫ ∞

t=0

Uie
Aiτ−→p i

idle(0|ni=0 at t=0)dt

(3.16)

Evaluating equation (3.16) involves the integration of a matrix exponential (eAit) which

can be very complicated depending on the size of the matrix Ai. Therefore, we evaluate

this expression numerically as follows:

E[Ti|I] =
∞∑

k=0

(
1− FTi|I(k∆)

)
∆ (3.17)

By keeping ∆ small, we can obtain very accurate results (see Figures 3.4 and 4.6(b)).

Figure 3.2 shows the average idle time at all service centers evaluated using equation
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(a) FT1|I(t) and FT1(t)
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(b) FT2|I(t) and FT2(t)
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(c) FT3|I(t) and FT3(t)
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(d) FT4|I(t) and FT4(t)
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Figure 3.1: The conditional, FTi|I(t), and joint, FTi(t), idle time distributions at all service
centers at a mobile relay speed of 3.89m/s
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(b) FT2|I(t) and FT2(t)
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(c) FT3|I(t) and FT3(t)
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(d) FT4|I(t) and FT4(t)
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Figure 3.2: The conditional, FTi|I(t), and joint, FTi(t), idle time distributions at all service
centers at a mobile relay speed of 1.2m/s
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(3.17) at two different speeds, namely 1.2m/s and 3.89m/s, with ∆ = 0.01 min. As

can be observed, as we expected from the distribution in Figures 3.1 and 3.2, some

service centers (like 2 and 3) experience large idle periods compared to others (like 4

and 5). We can also see that increasing the speed from 1.2m/s to 3.89m/s reduces

the average idle time over all service centers by an average of about 61%. As different

service centers experience different delays, fragments will be served at different rates and

therefore have different data latencies. To validate our analytical modeling approach we

simulated the network using the TOSSIM simulator [41]. TOSSIM simulates TinyOs

sensor networks at the bit level which guarantees a high level of fidelity [42]. We also

used TinyViz as a GUI interface with TOSSIM. To simulate mobility, we used Tython

[43]. Tython is a scripting language for TOSSIM that uses a Java implementation of the

Python programming language. Using Tython it is possible to modify the simulation

environment, like moving motes, injecting packets, pausing and resuming simulation,

changing the radio model, and inspecting the simulation state. Figure 3.2 compares the

analytical results to those obtained by simulation. It is evident that our analysis is very

accurate.
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Figure 3.3: The average idle time, E[Ti|I], obtained through both simulation and analysis
at all service centers

Figure 3.4 shows the effect of ∆ on the accuracy of the average idle time, E[Ti|I],

obtained numerically using equation (3.17) for s/c5 at a speed of 1.2m/s. The value of
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the expected idle time using ∆ = 1min is less by only 0.04% than that computed using

∆ = 0.01min, which implies that ∆ does not crucially affect our estimations.

The effect of ∆ on the accuracy
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Figure 3.4: The effect of ∆ on the accuracy of equation 3.17.

3.2.1 Additional Example

To confirm the accuracy of our model, we present another example that consists of

five fragments and four service centers as shown in Figure 3.6. Figure 3.7 shows the

closed queueing network model for this example. We obtained the average idle times

at all service centers in this example using both analysis and simulation based on the

parameters shown in Table 3.1. Idle time distributions are shown in Figure 3.5. We can

tell from those distributions that s/c1 and s/c4 will experience larger idle times than

s/c2 and s/c3, and that is what we can see in Figure 3.8. Figure 3.8 shows the average

idle times at all service centers obtained using both simulation and analysis. The results

confirm the accuracy of our model. The maximum error in the evaluations in Figure 3.8

is about (4%). Note that the policy used in this example produces an average idle time

at s/c1 that is almost equal to that at s/c4, and also produces an average idle time at

s/c2 that is almost equal to that at s/c3.
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Network Parameter Value

Num. of MRs 2
Num. of s/c’s 4

Speed (L) 3.89m/s
tsij 1.2min
d12 451.74m
d23 334.18m
d34 551.26m

Table 3.1: System parameters of the example shown in Figure 3.6.
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Figure 3.5: The conditional, FTi|I(t), and joint, FTi(t), idle time distributions at all service
centers in the example shown in Figure 3.6 using the parameters in Table 3.1
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Figure 3.6: A sample FWSN with five frag-
ments and four service centers.
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Figure 3.7: Gordon-Newell Network model
for the example shown in Figure 3.6

3.3 Movement Policies

As we have observed in Section 3.2, service centers did not receive the same share of

service and consequently experienced different average idle times with a large difference

between the minimum (which was 10.63min at a speed of 1.2m/s and 4.10min at a speed

of 3.89m/s) and the maximum (which was 32.61min at a speed of 1.2m/s and 13.1m/s)

averages. This does not only affect the poorly-served fragments but it also affects other

fragments. For instance, FRAG-3 in Figure 2.3 which is served poorly by s/c3 will

Average idle time at all service centers
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Figure 3.8: The average idle time at all service centers in the example shown in Figure 3.6
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affect all other fragments because all data paths pass through FRAG-3. Therefor, it

is important to guarantee that all service centers receive a fair share of service. Four

parameters influence the performance of the system:

(1) Number of mobile relays,

(2) Speed of mobile relays,

(3) Sojourn times at different service centers, and

(3) The routing probabilities between different service centers in the network.

Assuming that sojourn times are strictly constrained, we are left with three parameters

that may affect the average idle time; number of mobile relays, speed of movement,

and movement policy. Intuitively, increasing the number and/or speed of mobile relays

results in a decrease of the average idle time and consequently the end-to-end delay.

But, how does the movement policy (i.e., routing probabilities between service centers)

affect the average idle time? In order to answer this question, we propose three different

movement policies; uniform, distance based, and deterministic. In a uniform policy, a

mobile relay leaving a certain service center goes to any of the reachable neighboring

service centers with the same probability. The distance based policy suggests that a

mobile relay goes to closer neighboring service centers with higher probability than

farther ones. The third policy assumes that a mobile relay follows a deterministic route

through all the service centers (i.e. a cycle that goes over all service centers). Figure 3.9

shows the queueing network models for our case study defined in Chapter 2 under all

the three policies.

We modeled all three policies as well as the random policy shown in Figure 2.4 and

evaluated their performance. Figure 3.10 shows the average idle times at all service cen-

ters using all four policies obtained by TOSSIM simulations using 1.2m/s and 3.89m/s

speeds. Note s/c2 and s/c3 suffer more than others in all policies except the deterministic
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policy, and that s/c3 lies on the data paths of FRAG−1 though FRAG−5. Therefore,

the end-to-end delay of the data generated at those fragments will be negatively affected

by the poor service at s/c3. On the other hand, s/c3 receives a good service under the

deterministic policy compared to others. It is evident that the deterministic policy is

the fairest among all policies. Every service center is idle for the time required to travel

over the cycle. In our particular case study, a deterministic policy is optimal in terms

of fairness because all sojourn times (i.e. tsij) are equal.

Note that the Random policy with a speed of 3.89m/s is better than a deterministic

policy with a speed of 1.2m/s. Also, Figure 3.10 shows that our analytical results are so

close to those obtained by simulation. As a matter of fact, it turns out that optimizing

the movement policy might be better than increasing the number of mobile relays in

minimizing the maximum idle time in the network. To verify this, we simulated our case

study with different numbers of mobile relays ranging from 1 to 4 under the random

(the one shown in Figure 2.3) and the deterministic policies (the one shown in Fig-

ure 3.9(b)). For the same speed, as shown in Figure 3.11, the maximum idle time under

the deterministic policy with two and three MRs is better than that under the random

policy with three and four MRs respectively. Moreover, the maximum idle time under

the deterministic policy with two MRs is very close to that under the random policy

with four MRs. We conclude from this that the movement policy plays an important

role in influencing the performance of the system. Another thing that we conclude from

Figure 3.11 is that the effect of movement policy and the speed of movement degrades

as the number of MRs increases.
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Figure 3.10: The average idle times at all service centers obtained by analysis and simulation
using two different speeds, 1.2 and 3.89m/s.
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3.4 Summary

In this chapter we presented a framework for deriving the distribution of the idle

time at any service center based on the queueing network model introduced in Chap-

ter 2 (p.15). We used the model to generate numerical results for our case study in

Figure 2.3. The comparison between analytical and simulation results showed that our

model captures the behavior of the system accurately. Three movement policies were

modeled and tested in this chapter, namely, uniform, distance-based, and deterministic.

The analytical as well as the simulation results indicate that the movement policy has

a significant effect on the idle time. It turns out that in some cases, optimizing the

movement policy results in a performance improvement that exceeds that obtained by

just adding more mobile relays to the network with unoptimizing movement policy.
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CHAPTER 4 END-TO-END DELAY DISTRIBUTION

In this chapter we are interested in predicting the latency that the data might ex-

perience while being relayed between fragments before it eventually reaches the base

station. We refer to this latency as the “end-to-end delay”. In Section 4.1, we introduce

the end-to-end delay and explain some of the issues related to the evaluation of this de-

lay. We comment on the exact method to evaluate the end-to-end delay in Section 4.2.

Then, we propose two approximate approaches in Sections 4.3 and 4.4. In Section 4.5,

we show some analytical results and compare them to results obtained by simulation.

Finally, we summarizes the chapter in Section 4.6.

4.1 Introduction

In fact, the end-to-end delay is the time required to construct a path from a fragment

to the base station, and here is how:

First of all, we call the connection between two fragments a segment. In Figure 2.3, the

data generated at FRAG-1 will be relayed by an MR at service center s/c1 to FRAG-2

(segment 1), and then through s/c5 to FRAG-4 (segment 2). The last step is to relay

the data through s/c3 to the last fragment (segment 3). Then, the data latency is the

time required to activate all three segments (i.e., by having mobile relays at the appro-

priate service centers). In Chapter 3 we derived the idle time distribution at any service

center which is equivalent to the segment activation time. In this section we use this

distribution to introduce approximate methods to evaluate the end-to-end delay. Before
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introducing those methods, we first comment on the exact method and its complexity.

The main criterion for designing those methods is the level of dependency to assume

between the idle time periods of the service centers along the path. Three levels of

dependency are used:

(1) Complete Dependence: where we take the dependency between all idle times into

account, and this is the exact approach,

(2) Complete Independence: where we assume that all the idle times are completely

independent, and

(3) Partial Dependence: where we take the dependency only between a service center

and its predecessor on the path.

Assume that we have a path that connects n fragments, named {C1, C2 . . . , Cn}, using

n− 1 service centers as shown in Figure 4.1.

If it takes time t to construct the path, then this implies that the time t must be divided

C1 Ci
Cn1

i-1

n-1
i

Figure 4.1: A path of n components and n− 1 service centers

between all the service centers so that each service center is idle for some time between

0 and t. Let that division be {t1, t2, . . . , tn−1} such that ti is the idle time of s/ci and
n−1∑
i=1

ti = t, where the idle period of s/ci starts at the end of the idle period of s/ci−1. If

s/ci is non-idle following the end of ti−1, then ti must be 0. In this case the data would

be relayed directly from fragment i− 1 to fragment i + 1. This is shown in Figure 4.2.

Moreover, we do not allow t1 to be zero because we start measuring the delay from the

point s/c1 becomes idle.
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Since the understanding of the timing issue here is so critical for the derivations in

the next section, we summarize the facts associated with having a path of n− 1 service

centers experience an end-to-end delay of duration t:

(1) t1 > 0: the first node on the path must take a non-zero share of the path construc-

tion time.

(2)
n−1∑
i=1

ti = t: the sum of all the shares must equal the path construction time.

(3) ti = 0 implies that the number of MRs at s/ci at the end of the idle period of

s/ci−1 is at least one.

(4) ti > 0 implies that there are no MRs at s/ci at the end of the idle period of s/ci−1

and that would be the case for exactly ti time units.

At this moment (t1+dt):

- s/c1 has exactly one MR.

- s/c2 does not have any MR if t2>0, 

and has at least one MR if t2=0.

t1 t1+t2 t1+…+ti-1 t1+…+ti t1+…+ tn-1 = t

s/ci-1 is idle in

 [t1+…+ti-2, t1+…+ti-1]

s/c2 is idle 

in [t1,t1+t2]

s/c1 is idle 

in  [0,t1]
s/ci is idle in 

 [t1+…+ti-1, t1+…+ti]
s/cn-1 is idle in 

 [t1+…+tn-1, t1+…+tn-1]

At this moment (t1+...+ti-1+dt):

- s/ci-1 has at least one MR if ti-1=0, and 

has exactly one MR if  ti-1>0.

- s/ci does not have any MR if ti>0 and 

has at least one MR if ti=0.

0

Figure 4.2: The timing of the path construction process

4.2 Exact End-to-End Delay

In order to understand the level of complexity of computing the path construction

time, we make no approximations or simplifying assumptions regarding the level of de-

pendency between the idle periods in this section. However, we need to simplify the

computational complexity by using discrete summation instead of continuous integra-

tion. As we have seen in Chapter 3, evaluating the idle time at a service center requires
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the integration of a matrix exponential which might be complex depending on the size

of the matrix. As the evaluation of the end-to-end delay might include the integration

of multiple matrix exponentials, we relax the integration to a summation over a short

period of length ∆ time units. Throughout this chapter we will assume a ∆ of 0.01min.

Let us call the service center s/ci that has ti > 0 an idle service center and the one with

ti = 0 a busy service center. With different combinations of sub-intervals we will have

a maximum of 2n−1 − 1 busy/idle combinations. Consider the example shown in Figure

4.3 where we have a path of five service centers. For the sake of illustration we picked

the sub-intervals to be (t1, 0, 0, 0, t5) for service centers (s/c1, . . . , s/c5), respectively.

Therefore, the status of the system at t1 + dt must be:

- s/c1 has exactly one MR because it has just finished its idle period, and only one

transition can take place in a very short time period dt .

- Service centers s/c2, s/c3, and s/c4 have at least one MR each.

- s/c5 has no customers because it has to start its idle period right at the end of t1.

We define ζi to be the condition that must be satisfied at the end of the idle period (a

non-zero period) of s/ci. In our example:

ζ1 = (n2 > 0) ∧ (n3 > 0) ∧ (n4 > 0) ∧ (n5 = 0)

ζ5 = φ (no conditions)

Before we talk about the exact method and its complexity we introduce some defini-

tions:

- Let pi(t, ζi) be the probability that s/ci is idle for time t, and at the end of that

idle period the system will be in a state in which the condition ζi is satisfied.

- Let z be a path of n service centers {s/c1, ..., s/cn}, and let |z| be the length of

that path.
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The state at time t1+dt

Busy Busy Busy Idle

Figure 4.3: A sample busy/idle combination that might occur in a path of five service centers.

- Let ψ(z, t) be the probability mass function (pmf ) of having the path z con-

structed in time t, i.e., the end-to-end delay pmf.

Then, ψ(z, t) can be evaluated as follows:

(1) Divide t over the |z| nodes, and specify the conditions at the end of every idle

period as we did in the previous example.

(2) Evaluate
|z|∏
i=1
ti>0

pi(ti, ζi|ςi at the beginning of ti) (4.1)

where ςi is a condition defined as:

ςi =





ζi−1 if i > 1

ni = 0 if i = 1
(4.2)

(3) Sum (4.1) over all possible sub-intervals.

Apparently, this method is computationally intractable because of ζi. Note that in the

worst case we need to consider the state of the whole path and that gets worse as the

length of the path gets longer, since we will have to consider the state of the whole

queuing system. Therefore, we propose two approximations by relaxing ζi. First, we
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assume independence between the idle sub-intervals, i.e. ζi = φ. Second, we consider

the dependence only between two consecutive service centers along the path, i.e., ζi

conditions on a maximum of one service center only.

4.3 Approximation-I: Convolution (CONV)

Let Ti be a random variable that represents the idle time at s/ci, and let Xj be a

random variable that represents the construction time of path j. Then, Xj =
∑
i∈j

Ti. If

we assume that all the Ti’s are independent, then the probability distribution function

of Xj is the convolution of the all the distribution functions of the Ti’s [44]. Therefore,

using z and ψ(z, t) defined in the previous section, as well as FTi|I(t) and FTi
(t) defined

in Chapter 3 we have:

ψ(z, t) = FT1|I � FT2 · · ·� FTn(t) (4.3)

Note that in equation (4.3) we used FT1|I for the first service center on the path, and

that is again because we do not allow the idle time at that service center to be zero.

This approximation significantly reduces the complexity by ignoring the dependence

between the idle periods. However, assuming independence underestimates the end-to-

end delay since the presence of a MR at previous service centers is ignored, i.e. the

probability of being idle/busy at any service center is evaluated without considering the

status of previous service centers along the path. We will revisit this issue in Section

4.5 when we compare the end-to-end delay obtained using the convolution method and

that obtained using the dynamic programming approach we propose in the next section.
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4.4 Approximation-II: Dynamic Programming-Like Approach

(DPA)

The problem of evaluating the distribution of the end-to-end delay possesses a trade-

off between the accuracy of the solution and its complexity. The exact solution comes at

the cost of high computational complexity. The convolution method, on the other hand,

comes at the cost of low accuracy but with significantly lower computational complexity.

In this section we propose a dynamic programming-like approach (DPA) which can be

regarded as a compromise between the computational complexity and solution accuracy.

This compromise is based on the relaxation of the level of dependency between idle

periods, i.e., by only considering the dependency between every pair of consecutive

service centers.

Since any service center will be in one of two different states (i.e., busy or idle) at any

point in time, we have four different situations:

(1) s/ci is idle for time t given that s/cj was also idle; let the probability of this event

be pI|I(i, j, t),

(2) The current service center (s/ci) is idle for time t given that the previous service

center (s/cj) was busy ; let the probability of this event be pI|B(i, j, t),

(3) s/ci is busy given that s/cj was idle; let the probability of this event be pB|I(i, j),

and

(4) s/ci is busy given that s/cj was busy ; let the probability of this event be pB|B(i, j).

Next we derive the formulas for all the four conditional probabilities listed above.
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4.4.1 Conditional Probabilities

Let us start with the probability pI|I(i, j, t). Note that for the first service center on

the path, pI|I(i, j, t) = FTi|I(t) (equation (3.14)). For the other service centers, it is the

same as FTi|I(t) except for the initial condition −→p i
idle(0) (see equations (3.6) and (3.9))

where we have a different condition to be satisfied which is: s/cj has just ended its idle

period, i.e., nj changed from 0 to 1 and hence nj = 1 at the beginning of ti. We refer to

the probability of this scenario for a certain network state
−→
N as hi

idle(0,
−→
N |nj=1 at t=0).

This probability is given by:

hi
idle(0,

−→
N |nj=1 at t=0) =





prob(
−→
N , nj(

−→
N )=1 at t=0)

prob(nj=1 at t=0)
if nj(

−→
N ) = 1

0 otherwise

(4.4)

where prob(
−→
N , nj(

−→
N )=1 at t=0) is given by,

prob(
−→
N ,nj(

−→
N )=1, at t=0) =

M∑

k=1
k 6=j

nk(
−→
N+

−→
1 k−−→1 j)µk

M∑

l=1

µlnl(
−→
N+

−→
1 k−−→1 j)

qkjπ(
−→
N+

−→
1 k−−→1 j) (4.5)

We derived equation (4.5) following the same approach we used to derive equation (3.9).

We take the probability that the transition from queue k to queue j, that will lead to

state
−→
N , takes place before any other transition. The probability prob(nj=1, at t=0) is

given as,

prob(nj=1, at t=0) =
∑
−→
N ∗∈Ω

nj(
−→
N ∗)=1

prob(
−→
N ∗, nj(

−→
N ∗)=1 at t=0) (4.6)
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Using equations (4.5) and (4.6) we obtain,

hi
idle(0,

−→
N |nj=1 at t=0) =





M∑

k=1
k 6=j

nk(
−→
N +

−→
1 k −−→1 j)µk

M∑

l=1

µlnl(
−→
N +

−→
1 k −−→1 j)

qkjπ(
−→
N +

−→
1 k −−→1 j)

∑
−→
N ∗∈Ω

nj(
−→
N ∗)=1

M∑

k=1
k 6=j

nk(
−→
N ∗ +

−→
1 k −−→1 j)µk

M∑

l=1

µlnl(
−→
N ∗ +

−→
1 k −−→1 j)

qkjπ(
−→
N ∗ +

−→
1 k −−→1 j)

if nj(
−→
N ) = 1

0 otherwise

(4.7)

Note that, even though the parameter i does not appear in equation (4.7), it implies

that hi
idle(0,

−→
N |nj=1 at t=0) is defined only over network states in which ni(

−→
N ) = 0.

Let,

−→
h i

idle(0|nj=1) = [
−→
h i

idle(0,
−→
N 1|nj=1 at t=0), . . . ,

−→
h i

idle(0,
−→
N Ei

|nj=1 at t=0)]T (4.8)

Then, using equations (3.6) and (4.8) we get,

pI|I(i, j, t) =
−→
U i(−Ai)e

Ait
−→
h i

idle(0|nj=1) (4.9)

For pI|B(i, j, t), we do not know what the last transition was because we consider the

dependency between consecutive queues only. But, we know that the initial state must

have s/cj busy, i.e. nj > 0, and ni = 0. Therefore, we approximate the probability of

the initial state, which we refer to it as hi
idle(0,

−→
N |nj > 0 at t=0), using the steady state

probabilities. Equation 4.10 defines hi
idle(t,

−→
N |nj > 0 at t=0).

hi
idle(0,

−→
N |nj > 0 at t=0) =





π(
−→
N )∑

−→
N ∗∈Ω

nj(
−→
N ∗)>0

π(
−→
N ∗)

if nj(
−→
N ) > 0

0 otherwise

(4.10)
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And again hi
idle(0,

−→
N |nj > 0 at t=0) is defined over network states in which ni = 0. Let,

−→
h i

idle(0|nj>0) = [
−→
h i

idle(0,
−→
N 1|nj>0 at t=0), . . . ,

−→
h i

idle(0,
−→
N Ei

|nj>0 at t=0)]T (4.11)

Then, using equations (3.6) and (4.11) we get,

pI|B(i, j, t) =
−→
U i(−Ai)e

Ait
−→
h i

idle(0|nj > 0) (4.12)

The third conditional probability is pB|I(i, j). The condition that must be satisfied at

the initial state for pB|I(i, j) is the same as that for pI|I(i, j, t), which is that s/cj has

just ended its idle period but this time finding s/ci busy, i.e., nj=1 and ni>0. We define

hi
busy(0,

−→
N |nj=1 at t=0) as the probability of having the initial (at time 0) state

−→
N

in which ni > 0 given that s/cj has just ended its idle period, i.e., nj=1, and ni>0.

Therefor,

hi
busy(0,

−→
N |nj=1 at t=0) =





M∑

k=1
k 6=j

nk(
−→
N +

−→
1 k −−→1 j)µk

M∑

l=1

µlnl(
−→
N +

−→
1 k −−→1 j)

qkjπ(
−→
N +

−→
1 k −−→1 j)

∑
−→
N ∗∈Ω

nj(
−→
N ∗)=1

M∑

k=1
k 6=j

nk(
−→
N ∗ +

−→
1 k −−→1 j)µk

M∑

l=1

µlnl(
−→
N ∗)

qkjπ(
−→
N ∗ +

−→
1 k −−→1 j)

if nj(
−→
N ) = 1

0 otherwise

(4.13)

This time hi
busy(0,

−→
N |nj=1 at t=0) is defined only over network states in which ni > 0.

Equation (4.14) gives the final expression for pB|I(i, j).

pB|I(i, j) =
∑
−→
N∈Ω

ni(
−→
N )>0

hi
busy(0,

−→
N |nj=1 at t=0) (4.14)

The last conditional probability to find is pB|B(i, j). Let hi
busy(0,

−→
N |nj>0 at t=0) be

the probability of having the initial (at time 0) state
−→
N in which ni>0 given that s/cj
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is busy (i.e. nj>0). Then, using the same approximation we made to derive equation

(4.10) we get,

hi
busy(0,

−→
N |nj>0 at t=0) =





π(
−→
N )∑

−→
N ∗∈Ω

nj(
−→
N ∗)>0

π(
−→
N ∗)

if nj(
−→
N ) > 0

0 otherwise

(4.15)

Also, in this case, hi
busy(0,

−→
N |nj>0 at t=0) is defined over network states in which ni>0.

Equation (4.16) gives the final expression for pB|B(i, j).

pB|B(i, j) =
∑
−→
N∈Ω

ni(
−→
N )>0

hi
busy(0,

−→
N |nj>0 at t=0) (4.16)

4.4.2 Recursive Approach for Calculating the pmf for the End-to-End

Delay

Before we get into the details of our dynamic program, we start with some definitions.

- As defined before, z is a path of service centers.

- υ is used to index the service center over the path, i.e., z(υ) is the υth service

center along the path.

- ϕ is the status of a service center: ϕ = 0 means that the service center has just

ended its idle period, ϕ = 1 means a busy service center, and ϕ = 2 means that

the service center has started an idle period.

- α(t,z, υ, ϕ) is the probability that the υth service center along the path z is idle

for time t given that its predecessor (i.e. (υ − 1)th service center) was in a status

ϕ.

- γ(z, υ, ϕ) is the probability that the υth service center along the path z is busy

given that its predecessor (i.e. (υ − 1)th service center) was in a status ϕ.
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- ψ(t,z, υ, ϕ) is the probability that the end-to-end delay along the path z is t given

that service center s/cυ was in a status ϕ. Therefore, ψ(z, t) = ψ(t,z,z(1), 2).

Using the conditional probabilities we obtained earlier (viz., equations (4.9), (4.12),

(4.14), and (4.16)) we express α(t,z, υ, ϕ) and γ(z, υ, ϕ) as follows:

α(t,z, υ, ϕ) =





pI|I(z(υ),z(υ − 1), t) if ϕ=0 and υ>1

pI|B(z(υ),z(υ − 1), t) if ϕ=1 and υ>1

fTz(υ)|I(t) if ϕ=2 and υ=1

(4.17)

γ(z, υ, ϕ) =





pB|I(z(υ),z(υ − 1)) if ϕ = 0 and υ > 1

pB|B(z(υ),z(υ − 1)) if ϕ = 1 and υ > 1

0 if υ = 1

(4.18)

The basic idea of the dynamic program is that each service center has two possible states,

either it is busy (i.e., has at least one MR) or idle. The recursive step of the dynamic

programming-like approach for the evaluation of ψ(t,z, ϕ, υ) is given by equation (4.19).

ψ(t,z, ϕ, υ) = γ(z, υ, ϕ)ψ(t,z, 1, υ + 1) +

t/∆∑

k=1

α(k∆,z, υ, ϕ)ψ(t− k∆,z, 0, υ + 1)∆

(4.19)

The term, γ(z, υ, ϕ)ψ(t,z, 1, υ+1), is the probability that the current service center,

viz.,s/cυ, is busy and the rest of the path is idle for time t, and this is why the entire idle

time t should be incurred over all downstream service centers. Moreover, we pass ϕ = 1 in

the recursion so that in the following step in the recursion, the previous service center will

be known as a busy center. The second term,

t/∆∑

k=1

α(k∆,z, υ, ϕ)ψ(t− k∆,z, 0, υ + 1)∆,

is the probability that the current service center, viz., υ, is idle for time k∆ and an idle

time of t− k∆ is incurred over the rest of the path.

As illustrated at the beginning of Section 4.2, ∆ is used to transform the problem into

a discrete form in order to simplify the numerical evaluation. Equation (4.20) shows
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the boundary conditions for the recursive formula above. For the case of υ = |z|, the

equation returns one of two different values depending on the remaining time.

ψ(t,z, ϕ, υ) =





γ(z, υ, ϕ) if υ = |z| and t = 0

α(t,z, υ, ϕ) if υ = |z| and t > 0
(4.20)

4.5 Results and Discussions

Figure 4.4 shows ψ(t,z) for all data paths in the network shown in Figure 2.3

obtained using both CONV and DPA approaches using two different speeds, 1.2 and

3.89m/s. As this figure shows, the CONV approach overestimates the probability dis-

tribution function and therefore underestimates the average end-to-end delay. For in-

stance, the probability that the path {1− 5− 3} experiences an end-to-end delay that is

less than or equal 20min at a speed of 1.2m/s is about 0.95 using the CONV approach

and about 0.7 using the DPA approach. Figure 4.5 shows the average end-to-end delay

for all the data paths in our case-study with the network parameters in Tables 2.3 and

2.2 obtained using the distributions in Figure 4.4 as well as TOSSIM/Tython simula-

tion. The results shown in Figure 4.5 that the DPA approach predicts the end-to-end

delay accurately. On the other hand, the CONV approach does not work well and it

underestimated the average end-to-end delay by up to 66%, which makes this approach

inappropriate for evaluating the end-to-end delay. However, the CONV approach will

be useful to predict the end-to-end delay in large networks as we show in Chapter 5.

Figure 4.5 also shows that increasing the speed from 1.2m/s to 3.89m/s reduces the

end-to-end delay by an average of about 60%.

Figure 4.6 shows the effect of ∆ on the accuracy and running time of the DPA

approach. Figure 4.6(b) implies that varying ∆ between 0.01 and 1 does not crucially

affect the accuracy. For instance, the end-to-end delay evaluated at ∆ = 1 is just 2%

less than that evaluated at ∆ = 0.0125. On the other hand, the running time, as
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Figure 4.6(a) shows, increases exponentially as ∆ decreases. It went from 0.9228 min

at ∆ = 1min to 109.25 min at ∆ = 0.0125min. Therefore, we can increase the value of

∆ to reduce the running time without significantly degrading the accuracy.

4.6 Summary

In this chapter, we proposed two approximate methods to evaluate the end-to-end

delay. The first one is the convolution approach in which idle times at different service

centers are assumed to be independent. This assumption overestimated the probability

distribution and consequently underestimated the average end-to-end delay. The sec-

ond method is the Dynamic Programming-Like approach. This approach considers the

dependency only between a pair of consecutive service centers. The results show that

this approach achieves high accuracy.
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(a) Path {1,5,3} at a speed of 1.2m/s
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(b) Path {1,5,3} at a speed of 3.89m/s
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(c) Path {2,5,3} at a speed of 1.2m/s
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(d) Path {2,5,3} at a speed of 3.89m/s
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DPA CONV

(e) Path {4,5,3} at a speed of 1.2m/s
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(f) Path {4,5,3} at a speed of 3.89m/s
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(g) Path {5,3} at a speed of 1.2m/s
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(h) Path {5,3} at a speed of 3.89m/s

Figure 4.4: The end-to-end delay probability distribution for all data paths in the case-study
network of Figure 2.3 and Tables 2.2 and 2.3.
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Figure 4.5: The average end-to-end delay evaluated using convolution (CONV) and Dynamic
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CHAPTER 5 PRACTICAL CONSIDERATIONS

In this chapter we address two important issues associated with the data delivery

problem defined earlier. The first issue how to control MR mobility in FWSNs that

extend over a large area. Such level of coverage might increase the distances that MRs

need to travel. This increase results in longer idle times at service centers which means

larger end-to-end delays. To deal with this scenario, we propose to divide the whole

network into smaller partitions (i.e., groups of service centers) and deploy MRs locally

in each partition. The second issue the computation of the sojourn time (tsij) at a service

center. In all previous analysis and simulations we used the same tsij at all service centers.

However, different service centers might need different sojourn times depending on the

amount of generated data at a fragment as well as the amount of data relayed into

this fragment. Based on the queueing model proposed in Chapter 2, we estimate the

total amount of data (generated and relayed) that a fragment might hold. Using this

estimation, we propose an iterative algorithm to compute tsij for a service center.

5.1 Mobility Control in Large Networks

In large systems, like the one shown in Figure 5.1, two possible schemes to utilize

mobile relays may be used. First, to let MRs patrol the whole network. Second, to

divide the field into regions and assign a group of MRs to each region so that MRs need

to patrol each region locally instead of patrolling the whole field. In this section we

evaluate the performance of both schemes using a deterministic movement policy. But
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first, we need to answer a fundamental question: “How to divide the field”? For this

purpose, we define two criteria to divide a network field of size A into n regions:

(1) Area-Based : divide the whole field into n regions, each of which is of area
A

n
.

Then, the available MRs are distributed over the n regions based on the number

of service centers in each region. We refer to the service centers that belong to a

certain region a group. This approach is simple, and is reasonable if the network

is dense and sensors are uniformly deployed.

(2) Proximity-Based : define a threshold distance dthresh. Then, build a graph that

contains all service centers and has no edges. For every pair of service centers that

are less than dthresh apart, extend an edge between them so that the graph will be

divided into a number of connected subgraphs depending on the value of dthresh.

We call a the service centers that belong to one connected subgraph a group. The

next step is to distribute the available number of mobile relays over the connected

subgraphs based on the number of service centers in each subgraph, the larger

the size of the subgraph the greater the number of mobile relays assigned to it.

However, lower and upper bounds on the number of subgraphs can be achieved by

tuning dthresh.

There are two important issues regarding the distribution of MRs over regions. First,

a region (or a graph) of one or two service centers should not receive more than one mobile

relay according to the definition of the data delivery problem in FWSNs we introduced

in Chapter 2. Second, if we are left with one MR, then the priority of assigning an MR

to a region is given for the region that is spread over a larger area, i.e., the diameter of

a group.

We study the network shown in Figure 5.1 with six mobile relay nodes with the

network parameters shown in Table 5.1. Figure 5.2 shows the area-based devision of the

network in Figure 5.1. Group A, which has four service centers, receives two MRs, group
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Parameter Value Parameter Value

Num. of MRs 6 d4,10 1507.688m
Num. of s/c’s 10 d5,6 1451.9m

Speed (L) 1.2 and 3.89m/s d5,10 1670.039m
tsij 2min d6,8 1335.9m
d1,2 340.032m d7,8 283.04m
d1,3 421.472m d7,9 538.592m
d1,4 462.88m d7,10 832.416m
d2,3 422.912m d8,9 401.6m
d2,5 434.624m d3,4 339.104m
d2,6 1571.6m d3,5 361.92m

Table 5.1: Parameters of the network shown in Figure 5.1
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B, which has two service centers, receives one MR, and group C, which has four service

centers, receives three MRs. Note that group C and group A have the same number

of service centers, but group C received the sixth MR because it spreads over a larger

area. On the other hand, Figure 5.3 shows a proximity based division of this network

with dthresh = 550m. In this devision, group A receives three MRs, group B receives two

MRs, and group C receives one MR.

We simulated all three scenarios using deterministic movement policies with two dif-

ferent speeds of MRs namely, 1.2m/s and 3.89m/s. As Figure 5.4 shows, the average

idle time at all service centers using the Proximity-Based approach is upper bounded by

that obtained using the Whole-Network approach. For instance, the idle time at service

centers {1, 2, 3, 4, and 5} is reduced by an average of 42% using the Proximity-Based

from that using the Whole-Network approach at a speed of 1.2m/s. For a speed of

3.89m/s, the reduction is 35%, as shown in Figure 5.5, which implies that the benefit

from dividing the network decreases as the speed of movement increases.

The Area-Based approach has the disadvantage that a small number of service centers

might be scattered over a large area. Group B in Figure 5.2 is an example of such

scenario. The simulation results in Figures 5.4 and 5.5 show that service centers s/c5

and s/c10 experience very high idle times compared to other service centers under the

Area-Based division. This is because MRs were assigned on the number of service cen-

ters in a group without considering the distances between the service centers. However,

s/c5 and s/c10 receive good service under the other two approaches.

Figures 5.6 and 5.7 show the average and maximum idle times over all service centers

in the network. It is evident that the Area-Based approach performs the worst, whereas

the Proximity-Based approach outperforms all others. The average is less, under the

Proximity-Based approach, by 27% at 3.89m/s and 33% at 1.2m/s than that under

the Whole-Network approach. The average idle time at s/c6 is zero because a MR was

assigned to this service center alone.
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Figure 5.8 shows the end-to-end delay, for data generated at all fragments, using all three

approaches. It is evident that the proximity-based approach performs better than the

whole-network approach for some fragments, FRAG−1 through FRAG−6, and both

approaches were roughly equally efficient for the remaining fragments. However, the

area-based approach is the worst among all the others.

Figure 5.9 compares the end-to-end delay for four fragments, FRAG−1 through FRAG−
4, obtained by simulation to that obtained by analysis. To estimate the end-to-end delay

in a divided network, we use the DPA approach proposed in Chapter 4 within the same

group, and the CONV approach between different groups. In other words, the delay in

each group is evaluated using the DPA approach, and then the delay distributions of

all groups that form a path to the sink are convolved to get the total end-to-end delay.

This method had an average error of 22.6% even though the error was only about 3%

for FRAG− 2.

5.2 Engineering the Service Time

The assumption that tsij is the same for all service centers is not a practical one, since

different fragments with different sizes and different locations in the network require

different service times. This time depends on three parameters of the source-fragment:

(1) The size of the fragment, in terms of the number of sensor nodes,

(2) The average data generation rate by each sensor within the fragment, and

(3) The average amount of relayed data that will be temporarily buffered at the frag-

ment.

Before we get into details, we first introduce some definitions. For a fragment i, let:

- Si be the number of sensor nodes in fragment i.

- ρi be the data generation rate in bits/sec of a sensor in fragment i.
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- R be the sensor’s data transmission rate in bits/sec.

- ςi be the average amount of relayed data, in bits, that will be temporarily buffered

in fragment i.

- σi be the average total amount of data (generated and relayed) that is temporarily

buffered in fragment i.

- Hi is a set of all fragments that FRAG−i lies on their data paths toward the sink.

For example, in our case study in Figure 2.3, H6={1, 2, 3, 4, 5}, H3={1, 2, 4, 5},
H2={1, 4, 5}, and H1=H4=H5={}.

For a service center s/ck, let:

- s(k) be the source fragment that an MR at s/ck relays data from. For example,

in Figure 2.3, s(1) = 1, s(2) = 5, s(3) = 3, s(4) = 4, and s(5) = 2.

- d(k) be the destination fragment that an MR at s/ck relays data to. For example,

in Figure 2.3, d(1) = 2, d(2) = 2, d(3) = 6, d(4) = 2, and d(5) = 3.

By considering the idle time and the following sojourn time at s/ck to form an alternating

renewal process, equation (5.1) evaluates the average of the total amount of data relayed

into fragment s(k) by summing the data generation rates at all the fragments whose data

is relayed through our s(k) during the average idle time at s/ck as well as the sojourn

time.

ςs(k) =





(
tss(k),d(k) + E[Tk|I]

) ∑
i∈Hs(k)

Siρi if |Hs(k)| > 0

0 otherwise

(5.1)

Then, equation (5.2) is used to estimate the average amount of data that might be

buffered at a fragment, relayed into and generated within the fragment.

σs(k) =
(
tss(k),d(k) + E[Tk|I]

)
Ss(k)ρs(k) + ςs(k) (5.2)
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We propose an algorithm that rely on this approximation to calculate tsij. Algorithm 5.1

first initializes tsij, and then solves the closed queueing network and calculates the average

idle time at all service centers using the equation (3.17). The next step is to calculate

new tsij’s based on the average amount of buffered data evaluated using equation (5.2).

This process is repeated until all the differences between the new values of tsij and the

old ones are less than a predetermined threshold.

Algorithm 5.1: Calculate tsij

1: Initialize tsij ∀ i, j
2: repeat
3: Solve the queueing network to find the average idle time E[Tk|I] for every service

center s/ck.
4: for all service center s/ck do
5: Set i = s(k) and j = d(k)
6: Evaluate σi using Equation (5.2)
7: εk = |tsij − 2σi

R
| 1

8: tsij = 2σi

R

9: end for
10: until εk < threshold ∀k

Figure 5.10 shows σi for fragments 1 through 5 obtained using equation (5.2) as well

as simulation for our case study in Figure 2.3, using the parameters in Table 2.2 and

the following parameters:

- ρi = 1pkt/min = 4.8bit/sec ∀ i, i.e., based on a packet size of 36 bytes.

- R = 38.4kbps.

- Two MRs that move at a speed of 3.89m/s.

- Si’s are as shown in Figure 2.3.

Figure 5.10 shows that the proposed algorithm achieves an accurate estimation of the

average load, where the average load is the average amount of buffered data in a frag-

ment. The maximum error, compared to simulation results, is 10%. Figure 5.11 shows
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Figure 5.10: The average load of buffered
data at fragments 1 through 5 for the example
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Figure 5.11: The new calculated sojourn
time at all service centers for the example in
Figure 2.3 and Table 2.3.
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Figure 5.12: The average idle time at all
service centers using the new sojourn times
for the example in Figure 2.3 and Table 2.3.
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Figure 5.13: The average idle time at all
service centers using the new sojourn times
for the example in Figure 2.3 and Table 2.3.

the new calculated average sojourns times. Note that 1min that was assumed before is

much longer than the required time. The sojourn times were reduced by an average of

73%.

The new average idle times at all service centers after using sojourn times in Figure 5.10

are shown in Figure 5.12. The maximum reduction of the average idle time is about

25%.

As another example, we consider the example in Figure 3.6 with the parameters given

in Table 3.1. We used a data generation rate of 4pkt/min and a data transmission rate

of 74kbps. Figure 5.14 shows the average data load in fragments 1 through 4. Again, the

proposed algorithm approximates the average data load with good accuracy, maximum

error is (6.25%). The new calculated sojourn times are shown in Figure 5.15. The



www.manaraa.com

65

Average data load, analys is  vs . sim ulation

0

500

1000

1500

2000

2500

3000

3500

4000

1 2 3 4

Fragm ent

A
ve

ra
g

e 
B

u
ff

er
ed

 D
at

a 
(p

kt
) Analysis

Simulation
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data at fragments 1 through 5 for the example
in Figure 3.6 and Table 3.1.
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time at all service centers for the example in
Figure 3.6 and Table 3.1.
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Figure 5.16: The average idle time at all
service centers using the new sojourn times
for the example in Figure 3.6 and Table 3.1.
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Figure 5.17: The average idle time at all
service centers using the new sojourn times
for the example in Figure 3.6 and Table 3.1.

sojourn times were reduced by an average of 80%.

As shown in Figure 5.16, engineering the service time resulted in an improvement on

the average idle time of about 25% from the case of fixed tsij for all service centers. The

end-to-end delay was also improved as shown in Figures 5.13 and 5.17. This average

improvement was 28% for the case-study in Figure 2.3 and 25% for the example of

Figure 3.6.

5.3 Fragment Detection

In this section we propose some general guidelines on how to detect fragments in a

network and provide information about the locations of fragments to the base station
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Current_RN New_RNHeader

Figure 5.18: General structure of the NEW FRAGMENT packet.

(BS). For a sensor node i, let:

• ID(i) be the unique identification number (ID) of node i.

• RN(i) be the ID of the reference of node i. Initially, and as long as the network is

connected, the base station is the reference to all nodes in the network, therefore,

RN(i) = ID(BS) ∀i.

• BN(i) be a TRUE/FALSE flag used to indicate whether node i has detected

failures, i.e., lies on the boundary of a failure region. Initially, BN(i) = FALSE ∀i.

As shown in Algorithm 5.2, when a node i detects the failure of one or more of its

neighbors, it reports that failure to its reference node, i.e., RN(i). The RN(i) must

respond back with an acknowledgment (ACK) message. If node i does not receive an

ACK message within a Timeout period, it assumes that the failure it has just observed

or some other failure in the network has caused a network fragmentation. Therefore, it

floods the network, i.e., the reachable nodes, with a NEW FRAGMENT message. The

structure of this message is shown in Figure 5.18, and the flooding process is described

in Algorithm 5.3. The smallest RN is adopted by all sensor nodes in the fragment and

is set as the new reference node. This will make the process recursive and will allow the

detection of all possible fragments.

On the other hand, when the base station receives (or detects) any failure reports, it

releases a mobile agent to collect information about the fragments. It collects informa-

tion, i.e., locations, about boundary nodes, i.e., those with BN(i) = TRUE. When the

mobile agents is done with the boundary of one fragment, it moves according to a certain
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Algorithm 5.2: FRAGMENT DETECTION

1: for all Sensor node i do
2: BN(i) = FALSE
3: RN(i) = ID(BS)
4: end for
5: loop
6: if a neighboring node failed then
7: Report the failure to the RN(i)
8: BN(i) = TRUE
9: if no ACK is received from the RN(i) then

10: createFragment(i)
11: end if
12: end if
13: end loop

Algorithm 5.3: createFragment(i)

1: NEW FRAGMENT pkt
2: pkt.Current RN = RN(i)
3: pkt.New RN = ID(i)
4: Broadcast(pkt)

strategy to the next fragment and collects information from there too. Eventually, the

mobile agent delivers the collected information back to the base station.

5.4 Summary

We have addressed the issue of data delivery of FWSN that spread over large areas.

Three approaches were evaluated, whole-network, proximity-based division, and area-

based division. The results show that, in general, proximity-based division is the best

among all others. However, this depends on the network topology. The benefit from

proximity division degrades as the speed of mobile relays, or equivalently the distances

between service centers, decreases.

We have also studied the issue of engineering the sojourn times at service centers. An

algorithm to estimate sojourn times which are just sufficient to deliver data was intro-
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duced, and was shown to improve the end-to-end delay performance. We also provided

some general guidelines on how to detect fragments and gather information about their

locations.
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CHAPTER 6 CONCLUSIONS AND FUTURE WORK

A new form of network disconnection called Fragmented Wireless Sensor Network

(FWSN ) was addressed in this thesis. We proposed the use of resource rich mobile

agents that move in the field and operate as data relays between fragments to eventually

deliver data to the base station. A mathematical model based on modeling the network

and the mobility of mobile relays as a queueing network was presented and used to

evaluate the performance of a FWSN. The queueing network model was developed to

capture a number of parameters including number and speed of MRs as well as the

movement policy. Using steady state probabilities from the model, we then evaluated

the distribution of the delay to deliver data between two fragments.

We also provided two approximations to evaluate the end-to-end delay, the CONV

approach which assumes independence between idle times and the DPA approach which

considers the dependence only between two consecutive service centers along the path.

The DPA approach achieves high accuracy, whereas the CONV approach underestimates

the end-to-end delay. Despite this inaccuracy, the CONV approach works with reason-

able accuracy in divided FWSNs.

The results show that our model accurately evaluates the fragment-to-fragment and

fragment-to-sink delays. It also suggest that optimizing the movement policy might

lead to a better performance than just adding more MRs to an unoptimized policy.

Moreover, we studied the issue of engineering the sojourn time, i.e., the amount of

time that an MR needs to spend at a service center to relay data. An algorithm to

estimate sojourn times which are just sufficient to deliver data was introduced, and was
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shown to be accurate and improves the end-to-end delay performance.

Depending on the network topology, mobile data relays (MDR) might not be the best

possible solution to deliver data in FWSNs. Instead, mobile data collectors may perform

better. Moreover, a mobile sink or multiple mobile sinks might also perform better if

sink mobility is feasible. Our model can be used to evaluate the end-to-end delay in

both “mobile data collectors (MDC)” and “mobile base stations (MBS)” approaches. In

the case of mobile base stations, the idle time at a service center is the end-to-end delay

of the data generated at the fragment being served by that service center.

Modeling mobile data collectors is more intricate. The end-to-end delay for a fragment

i that is served by service center s/ck in the case of MDCs consists of two main parts:

1. The time until a MDC reaches the fragment and starts collecting data. This is

exactly the idle time at a service center that we derived in Chapter 3.

2. The time until a MDC reaches the sink and delivers the data. This time can be

evaluated as follows:

(a) Solve the queueing network with one customer, and then

(b) Derive the idle time distribution, using the same approach in Chapter 3, at

the sink service center with the following initial condition: s/ck has started

an idle period. This idle time will be the travel time from s/ck to the sink

service center.

Therefore, our queueing network model can be used to evaluate the performance of all

the three approaches (MDR, MDC, and MBS).

Our future work will include several related issues that have not been addressed in this

work:

- Application specific MAC protocols: it is evident that sensor nodes in each frag-

ment need to turn their radio on when MRs are present at the appropriate service
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center. Therefore, we believe that a significant amount of power could be saved

by designing a MAC protocol that is specific for FWSN.

- We did not study the case when multiple data paths from a fragment to the base

station exist. Therefore, we plan to extend our work to model this case.

- We plan to extend our modeling approach to model two cases; first, when an MR

needs to move between two adjacent fragments to relay data, and second, when

more than one MR can line up to form a communication path between two distant

fragments.

- As the results in Chapter 3 indicate, optimizing the movement policy might lead to

a better performance than that achieved by just increasing the number of mobile

relays without enhancing their mobility scheme. Therefore, we plan to consider this

optimization problem in our future work both, independently from other factors

and jointly with the number of MRs, speed of a MR, and the cost of a route (i.e.,

probability of failure on a route).

- Sensor nodes in the areas outlined by the dashed lines and labeled S1, S2, and S3

in Figure 6.1 suffer more than other nodes in terms of power consumption because

they have to relay more traffic than others. Such unbalance in the load distribution

is a consequence of random deployment. Spots like S1, S2, and S3 are usually

referred to as hot spots or hot zones.

We plan to use mobile relays to help the sensor nodes in each hot zone by spending

some time (we call this time the sojourn time) at that zone, and act to relay traffic

on behalf of sensor nodes in the hot spot. Once an MR is present in a hot zone,

all sensor nodes in that zone turn off their radio transceivers to save power. We

can use the same queueing network model presented in Chapter 2 to evaluate the
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average idle time at a hot zone, i.e., the time duration in which a hot zone did not

have any MR.

Sensor Node Base Station

S1

S2

S3

Figure 6.1: Random deployment might cause some sensor nodes to run out of power and die
early because of unbalanced load distribution.
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APPENDIX A THE EQUILIBRIUM DISTRIBUTION OF A

GORDON-NEWELL QUEUEING NETWORK

Consider a Gordon-Newell network [45] with M queueing nodes and a constant pop-

ulation of K customers that circulate in the network. Each queueing node i consists

of a FIFO queue and an infinite number of service channels that have the same service

time which is drawn independently from an exponential distribution with mean 1
µi

. A

customer leaving queue i goes to queue j with probability qij.

Let ni be the number of customers at queue i, and let
−→
N = [n1, . . . , nM ] be the state of

the network such that
M∑
i=1

ni = K and ΩK be the set of all possible network states with

K customers. It has been shown in [45] that the steady state (equilibrium) distribution

of the network state is given by,

π(
−→
N ) =

1

G(M,K)

M∏
i=1

(
λi

µi

)ni

(A.1)

where λi is the effective arrival rate at queue i which can be obtained by solving the set

of dependent equations

λi =
M∑

j=1

λjqji, 1 ≤ i ≤ M (A.2)

One of the λi’s should be assigned a non-zero positive value, say 1, in order to solve for

the other arrival rates. On the other hand, G(M,K) is a normalization constant that

makes all the π(
−→
N ) sum to one. Therefore,

G(M, K) =
∑
−→
N∈ΩK

M∏
i=1

(
λi

µi

)ni

(A.3)
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The computational complexity of equation (A.3) is exponential because the summation

includes
(

M+K−1

K

)
terms. J. P. Buzen proposed a recursive method, called the Convo-

lution algorithm, to evaluate G(M, K) in O (MK) iterations [40]. Below, we describe

this algorithm.

The Convolution Algorithm to Compute G(M,K)

- For any m = 1, . . . , M define:

ρm =
λm

µm

(A.4)

- Let k = 1, . . . , K and m = 1, . . . , M , then G(M, K) can be computed recursively

using the following recursive formula:

G(m, k) = G(m− 1, k) + ρmG(m, k − 1) (A.5)

- There are two boundary conditions for this formula:

G(m, 0) = 1, m=0, . . . ,M (A.6)

G(0, k) = 0, k=1, . . . , K (A.7)
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APPENDIX B GLOSSARY

- M : Total number of queues in a closed queueing network.

- K: Population size in a closed queueing network.

- ni: Number of customers at queue i.

-
−→
N : A state of a closed queueing network such that

−→
N = {n1(

−→
N ), . . . , nM(

−→
N )}.

Therefore,
M∑
i=1

ni(
−→
N ) = K.

- Ω: The set of all possible system states, |Ω| =
(

M+K−1

M

)
.

- uj : The state-independent service rate of queue j.

- qij : The probability that a customer leaving queue i goes to queue j.

- π(
−→
N): The steady-state probability of state

−→
N .

- Ei: The number of system states in which ni=0.

- pi
idle(t,

−→
N ): The probability that queue i is idle for time greater than t.

- −→p i
idle(t): A column vector of pi

idle(t,
−→
N ) over all the states in which ni=0. There-

fore, −→p i
idle(t) = [pi

idle(t,
−→
N 1), . . . , pi

idle(t,
−→
N Ei

)]T .

- Ui: A row vector of ones such that |Ui| = Ei.

- Ti: A random variable that represents the idle time of queue i.
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- FTi
(t): The cumulative density function of Ti, i.e., FTi

(t) = probability{Ti ≤ t}.

- fTi
(t) = d

dt
FTi

(t): The probability density function of Ti, i.e., fTi
(t) = d

dt
FTi

(t).

- FTi|idle(t): The cumulative density function of Ti given that queue i is idle at the

reference time t=0. Therefore, FTi|idle(t) = probability{ Ti ≤ t | ni=0 at t=0}.

- fTi|idle(t): The probability density function of Ti given that queue i is idle at the

reference time t=0. Therefore, fTi|idle(t) = d
dt

FTi | idle(t).

- s/ci: The ith service center in a fragmented wireless sensor network.

- pi(t, ζi): The probability that s/ci is idle for time t and at t + ∆t the condition

ζi is satisfied.

- pI|I(i, j, t): The probability that s/ci is idle for time t given that s/cj was also

idle.

- pI|B(i, j, t): The probability that s/ci is idle for time t given that s/cj was busy.

- pB|I(i, j): The probability that s/ci is busy given that s/cj was idle.

- pB|B(i, j): The probability that s/ci is busy given that s/cj was busy.

- hi
idle(0,

−→
N |nj=1 at t=0): The probability of

−→
N , where ni(

−→
N )=0, given that nj

changed from 0 to 1.

- hi
idle(0,

−→
N |nj>0 at t=0): The probability of

−→
N , where ni(

−→
N )=0, given that

nj>0.

- hi
busy(0,

−→
N |nj = 1 at t=0): The probability of

−→
N , where ni(

−→
N ) > 0, given that

nj > 0.

- hi
busy(0,

−→
N |nj > 0 at t=0): The probability of

−→
N , where ni(

−→
N ) > 0, given that

nj > 0.
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- ϕ: The status of a service center: ϕ = 0 means that the service center has just

ended its idle period, ϕ = 1 means a busy service center, and ϕ = 2 means that

the service center has started an idle period.

- z: A path of n service centers {s/c1, ..., s/cn}

- α(t,z, υ, ϕ): The probability that the υth service center along the path z is idle

for time t given that its predecessor (i.e., (υ−1)th service center) was in a status

ϕ.

- γ(z, υ, ϕ):The probability that the υth service center along the path z is busy

given that its predecessor (i.e., (υ−1)th service center) was in a status ϕ.

- ψ(z, t): The probability mass function of the end-to-end delay along z.

- s(k): The fragment that an MR at s/ck relays data from.

- d(k): The fragment that an MR at s/ck relays data to.

- Hi: A set of all fragments that FRAG−i lies on their data paths toward the sink.

- Si: The number of sensor nodes in fragment i.

- ρi: The data generation rate in bits/sec in fragment i.

- R: The data transfer rate in bits/sec.

- ςi: The average amount of relayed data, in bits, that will be temporarily buffered

in fragment i.

- σi: The average total amount of data (generated and relayed) that will be tem-

porarily buffered in fragment i.
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